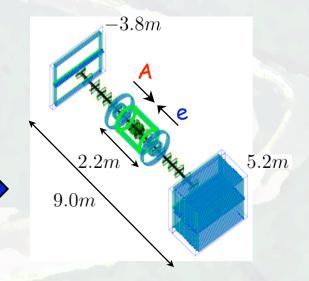
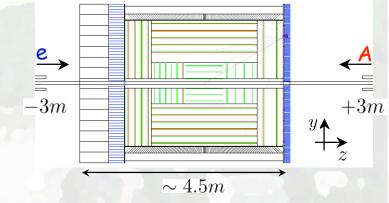


eRHIC Detector Design Studies

_


Implications and Constrains on the Accelerator/Detector interface


Bernd Surrow

Outline 2

- Physics program driven requirements
 - Constraints imposed by collider kinematics
 - eRHIC Detector design aspects
 - > General considerations
 - > Design 1: Forward physics (unpolarized eA MPI-
 - Munich group)
 - Design 2: General purpose(unpolarized/polarized ELECTRon-A)
 - Constraints on accelerator/detector interface and background issues

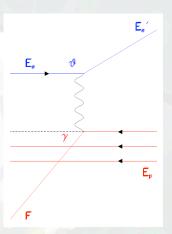
Summary and Outlook

Physics program driven requirements

- General considerations: Machine aspects
 - Beam species and energy
 - Polarized (transverse/longitudinal up to 70%) electron (5-10GeV)/positron (10GeV)
 - Polarized (transverse/longitudinal up to 70%) protons (50-250GeV) and potentially polarized ³He
 - Light and heavy nuclei (e.g. Au) 100GeV/u

Variable centre-ofmass energy: 30-100GeV

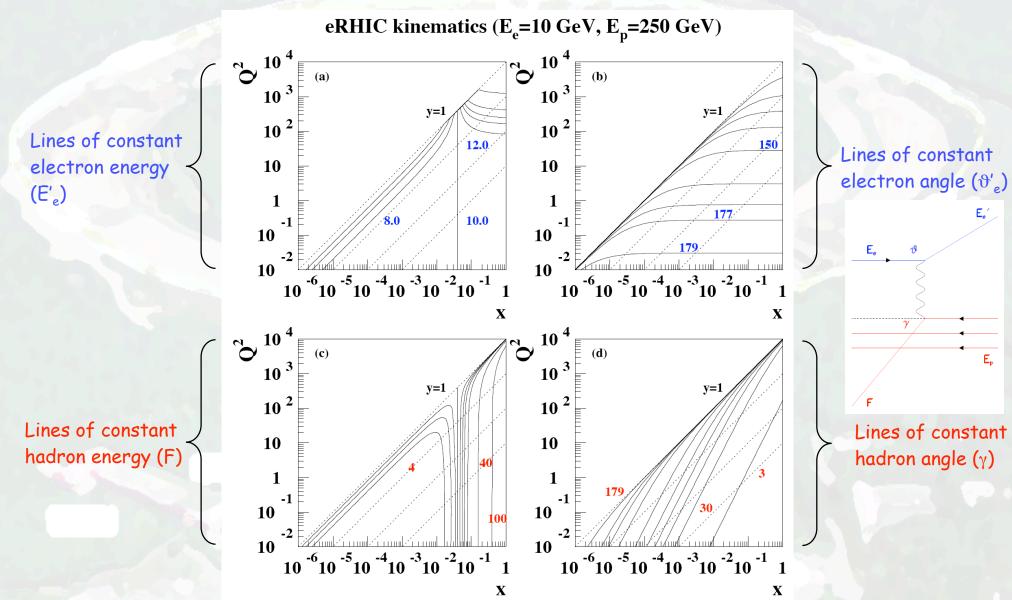
Luminosity


- 10GeV electron/positron storage ring: ep (~10³³cm⁻²s⁻¹) (10GeV on 250GeV) and eA (~10³¹cm⁻²s⁻¹) 10GeV on 100 GeV/u): Bunch crossing frequency: 28MHz Constrain on choice of detector/trigger system!
- Energy recovery superconducting linac (ERL): ep (~10³⁴cm⁻²s⁻¹) and eA (~10³²cm⁻²s⁻¹)
- □ Polarization: Transverse/longitudinal up to 70% for e/p
 - Spin rotator system
 - Polarization measurement (e/p)
 - Local polarimetry (Track trans./long. spin manipulation around IR)
 - Relative luminosity measurement
- □ Machine background
 - Synchrotron radiation (System of absorbers and collimators Constrain on beam pipe design)
 - Beam-gas background (Electron/positron and proton beam Detector shielding arrangement)

Physics program driven requirements

General considerations: Detector aspects

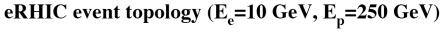
- Measure precisely scattered electron over large polar angle region (Kinematics of DIS reaction)
- Tag electrons under small angles (Study of transition region: DIS and photoproduction)
- Measure hadronic final state (Kinematics, jet studies, flavor tagging, fragmentation studies, particle ID)
- \square Missing E_T for events with neutrinos in the final state (W decays) and Physics beyond the SM (Hermetic detector)
- □ Zero-degree photon detector: Control radiative corrections and luminosity measurement (ep Bremsstrahlung)
- Tagging of forward particles (Diffraction and nuclear fragments) such as...:
 - Proton remnant tagger
 - Zero degree neutron detector
- Challenge to incorporate above in one detector: Focus on two specific detector concepts!

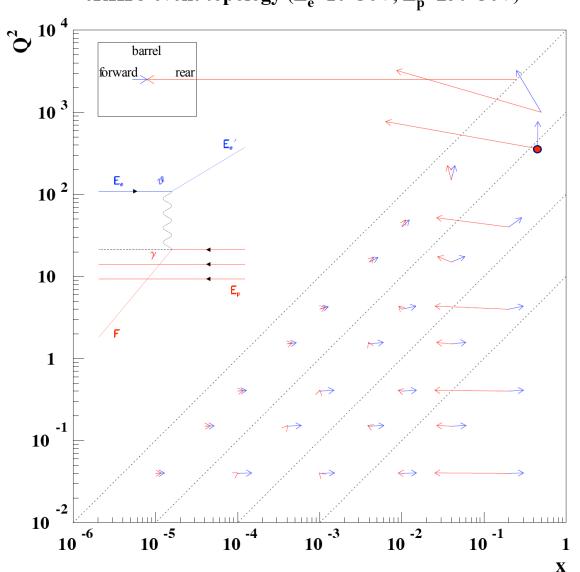


Constrain on machine layout!

Constraints imposed by collider kinematics

General considerations

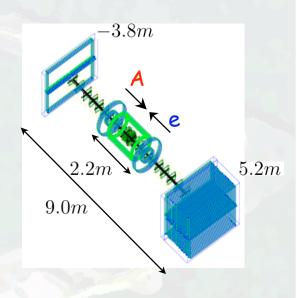


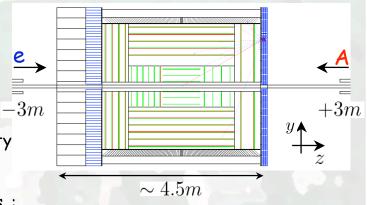

Constraints imposed by collider kinematics

Event topology

 Low-x-low Q²: Electron and current jet (low energy) predominantly in rear direction

• High-x-low Q2: Electron in rear and current jet (High energy) in forward direction

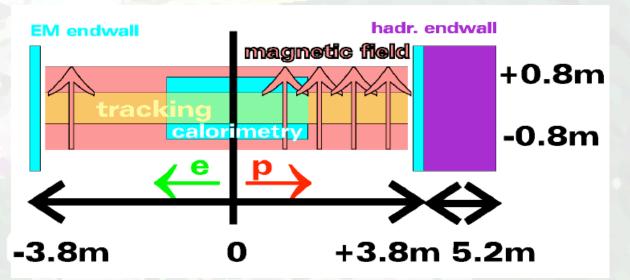

High-x-high Q2: Electron predominantly in barrel/forward direction (High energy) and current jet in forward direction (High energy)


$$Q^2 = 361 GeV^2 \quad x = 0.45$$

$$E'_e = 18 GeV \quad F = 104 GeV$$

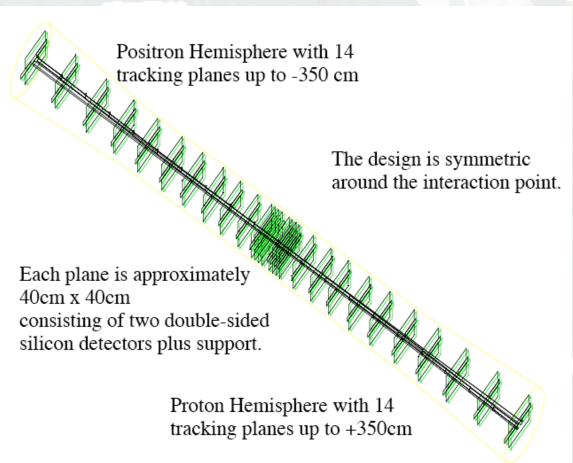
$$\vartheta'_e = 90^\circ \quad \vartheta_h = 10^\circ$$

General considerations


- □ Design 1: Forward physics (unpolarized eA MPI Munich group):
 - Specialized detector system to enhance forward acceptance of scattered electrons and hadronic final state
 - Main concept: Long inner dipole field (7m)
 - Required machine element-free region: approx. ±5m
- □ Design 2: General purpose (unpolarized/polarized ELECTRon-A):
 - Compact central detector (Solenoidal magnetic field) with specialized forward/rear tagging detectors/spectrometers to extend central detector acceptance
 - Required machine element-free region: approx. ±3m
- □ Detector sub-systems in both design concepts:
 - Zero-degree photon detector (Control radiative corrections and luminosity measurement)
 - Tagging of forward particles (Diffraction and nuclear fragments) such as...
 - Proton remnant tagger
 - Zer0-degree neutron detector

- Design 1: Forward physics (unpolarized eA MPI-Munich group) (1)
 - Detector concept
 - Compact detector with tracking and central EM calorimetry inside a magnetic dipole field and calorimetric end-walls outside:
 - Bend forward charged particles into detector volume
 - Extend rapidity compared to existing detectors
 - Tracking focuses on forward and backward tracks
 - No tracking in central region

I. Abt, A. Caldwell, X. Liu, J. Sutiak, MPP-2004-90, hep-ex 0407053



Design 1: Forward physics (unpolarized eA MPI-Munich group) (2)

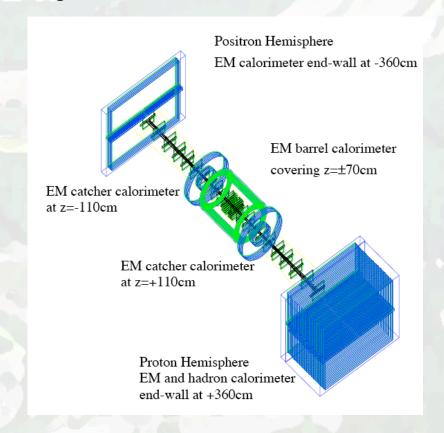
□ Tracking system:

- High-precision tracking with $\Delta p_{T}/p_{T} \sim 2\%$
- Angular coverage down to $\eta \approx 6$ over the full energy range
- Concept: 14 Si-strip tracking stations (40 X 40 cm)
- Assumed hit resolution:
 20µm
- Momentum resolution from simulations: Few percent!

I. Abt, A. Caldwell, X. Liu, J. Sutiak, MPP-2004-90, hep-ex 0407053

I. Abt.

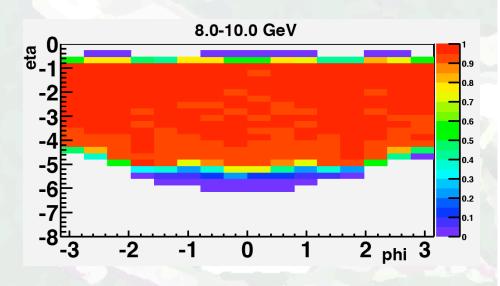
X. Liu, J. Sutiak, MPP-2004-


A. Caldwell,

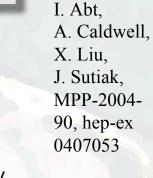
90, hep-ex 0407053

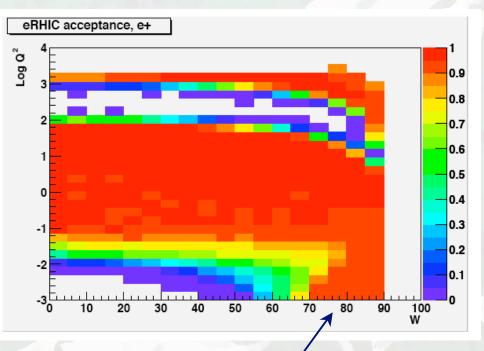
eRHIC - Detector design aspects

- Design 1: Forward physics (unpolarized eA MPI-Munich group) (3)
 - □ Calorimeter system:
 - Compact EM calorimeter systems: Si-Tungsten
 - Forward hadron calorimeter: Design follows existing ZEUS calorimeter



Design 1: Forward physics (unpolarized eA MPI-Munich group) (4)


□ Acceptance:


- Full tracking acceptance for $|\eta|$ > 0.75 No acceptance in central region $|\eta|$ < 0.5
- Q² acceptance down to 0.05GeV² (Full W range) Full acceptance down Q²=0GeV² for W>80GeV
- High x: Electron (Q2) and Jet (x) to determine event kinematics

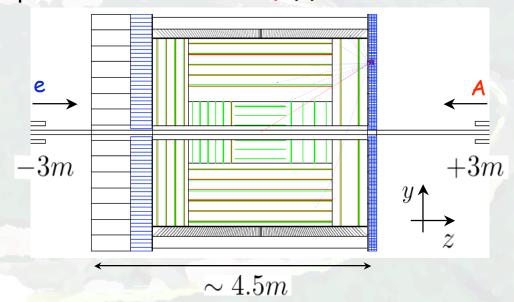
Track efficiency:

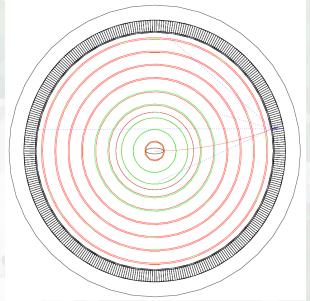
- Full efficiency below 6GeV for η < -8 -
- For larger energies, full efficiency for $\eta < -5$

$$\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right)$$

 $W^2 pprox rac{Q^2}{x}$

Bernd Surrow

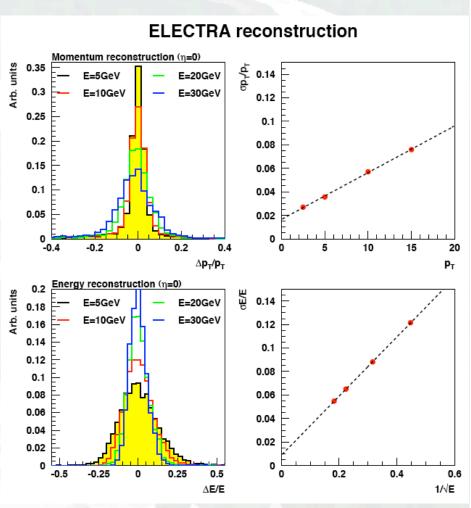


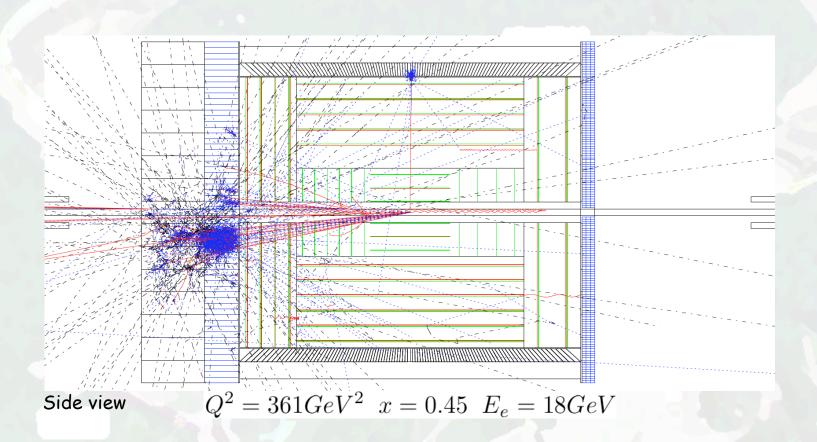

J. Pasukonis, B.S.

Design 2: General purpose (unpolarized/polarized ELECTRon-A) (1)

□ Detector concept:

- Hermetic detector system inside ±3m
 machine element free region
- Starting point:
 - Barrel and rear EM system: e.g. Si-Tungsten (Similar to Design 1)
 - Forward EM/hadron calorimeter:
 e.g. Pb-scintillator
 - Tracking system and barrel EM inside solenoidal magnetic field
 - Tracking system based on highprecision Si (inner) and micropattern technology (Triple-GEM) (outer)

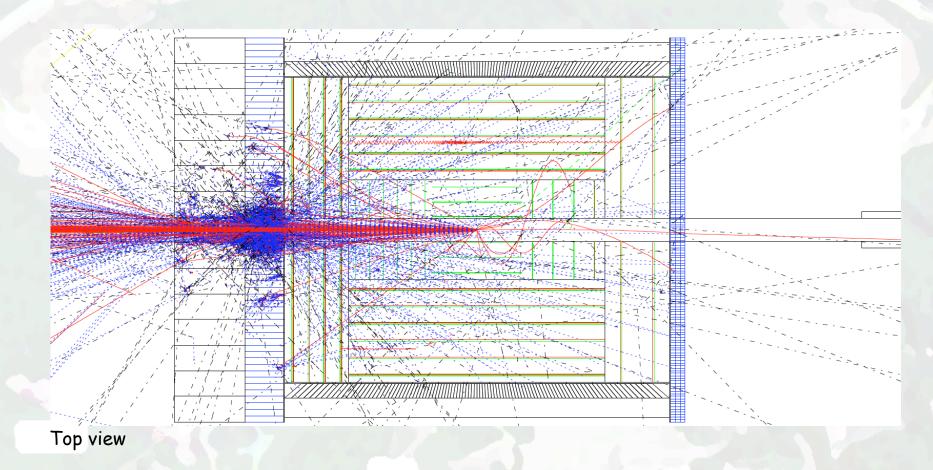



J. Pasukonis, B.S.

- Design 2: General purpose (unpolarized/polarized ELECTRon-A) (2)
 - □ ELECTRA detector simulation and reconstruction framework:
 - GEANT simulation of the central detector part (tracking/calorimetry) available: Starting point
 - Calorimeter cluster and track reconstruction implemented
 - Code available through CVS repository:
 http://starmac.lns.mit.edu/~erhic/electra/
 - To-do-list:
 - Evaluate and optimize detector configuration
 - Design of forward tagging system and needed particle ID systems for various exclusive processes
 - In particular for eA events: Optimize forward detector system for highmultiplicity environment

- J. Pasukonis, B.S.
- Design 2: General purpose (unpolarized/polarized ELECTRon-A) (3)
 - □ Simulated ep DIS event (LEPTO)

Lower Q^2 acceptance $\approx 0.1GeV2$


DIS generators used so far:

- > LEPTO
- > DJANGO

J. Pasukonis, B.S.

- Design 2: General purpose (unpolarized/polarized ELECTRon-A) (4)
 - □ Simulated eCa event (VNI)

Interaction region and background issues

IR region

- □ Design 1: Forward physics (unpolarized eA MPI-Munich group)
 - Machine element free-region: approx. ±5m
 - Physics program could be accomplished at lower ("initial") luminosity operation
- Design 2: General purpose (unpolarized/polarized ELECTRon-A)
 - Machine element free-region: approx. ±3m
 - Physics program requires high luminosity operation
- Synchrotron radiation background
 - Optimize beam pipe shape
 - Accommodate synchrotron radiation fan generated by e-beam as a result of beam separation (C. Montag's talk)
 - Maximize detector acceptance
 - Design of absorber (Protection of septum and minimize backscattered synchrotron radiation) and masking system: Initial studies based on a GEANT simulation of a V-shaped absorber presented by J.Beebe-Wang et al. at PAC2005
- Beam-gas background
 - Bremsstrahlung of electrons with residual gas (off-momentum electrons) and proton-beam gas background
 - Shielding and collimation
 - Minimize dead-material close to the beam
 - Good vacuum conditions crucial

Summary and Outlook

Detector design issues

- Well-developed design of a Forward detector system focusing on low-x / high-x physics (Adaptation and optimization of a detector presented for the HERA III program)
- Design of a compact central detector started: Detector simulation and reconstruction framework: ELECTRA (CVS repository http://starmac.lns.mit.edu/~erhic/electra/)
- Possible scenarios of both design concepts:
 - 1 detector only (Staging): Start program with Forward physics detector system followed by an upgrade of the
 interaction region and installation of a central detector system re-using parts of the Forward detector system (e.g.
 rear and forward calorimeter)
 - 2 IR regions would allow to accommodate both detector concepts independently
- Constraints and implications of machine/detector interface
 - □ Inner-most machine elements
 - Synchrotron radiation and other machine related background
 - □ Incorporate forward and rear tagging system including luminosity monitoring system into machine layout